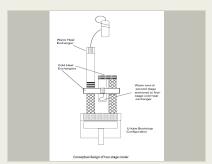
High Capacity, High Efficiency 10 to 20 K Pulse Tube Cryocooler, Phase I

Completed Technology Project (2016 - 2016)


Project Introduction

Closed-cycle cryocooler alternatives currently available for space applications in the temperature range of 10 to 20 K are not well suited to the requirements of such applications. In many cases reliability is low and vibration high. In other cases, coolers are too massive and inefficient. However, such coolers are often important components in enabling many of the advanced sensor and detector technologies of the future. This proposal describes a two-stage pulse tube cooler (PTC) that combines a bootstrap staging configuration with an innovative second-stage design to deliver cooling in the range of 10 to 20 K. The proposed cooler contains four innovative concepts that together will overcome the limitations of current cryocooler technologies and improve efficiency while simultaneously reducing mass.

Primary U.S. Work Locations and Key Partners

Organizations Performing Work	Role	Туре	Location
Madison CryoGroup,	Lead	Industry	Middleton,
LLC	Organization		Wisconsin
Jet Propulsion Laboratory(JPL)	Supporting	NASA	Pasadena,
	Organization	Center	California

High Capacity, High Efficiency 10 to 20 K Pulse Tube Cryocooler, Phase I

Table of Contents

Project Introduction Primary U.S. Work Locations	1
and Key Partners	1
Project Transitions	
Images	2
Organizational Responsibility	
Project Management	
Technology Maturity (TRL)	2
Technology Areas	3
Target Destinations	3

High Capacity, High Efficiency 10 to 20 K Pulse Tube Cryocooler, Phase I

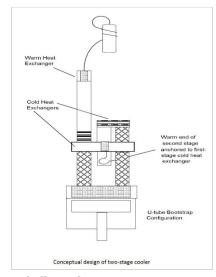
Completed Technology Project (2016 - 2016)

Primary U.S. Work Locations		
California	Wisconsin	

Project Transitions

0

June 2016: Project Start



December 2016: Closed out

Closeout Documentation:

• Final Summary Chart(https://techport.nasa.gov/file/139833)

Images

Final Summary Chart Image
High Capacity, High Efficiency 10 to
20 K Pulse Tube Cryocooler, Phase
I Project Image
(https://techport.nasa.gov/imag
e/126990)

Briefing Chart Image

High Capacity, High Efficiency 10 to 20 K Pulse Tube Cryocooler, Phase I

(https://techport.nasa.gov/imag e/130050)

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Organization:

Madison CryoGroup, LLC

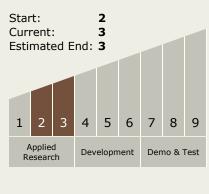
Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Project Management

Program Director:

Jason L Kessler


Program Manager:

Carlos Torrez

Principal Investigator:

James Maddocks

Technology Maturity (TRL)

Small Business Innovation Research/Small Business Tech Transfer

High Capacity, High Efficiency 10 to 20 K Pulse Tube Cryocooler, Phase I

Completed Technology Project (2016 - 2016)

Technology Areas

Primary:

- TX14 Thermal Management Systems
 - □ TX14.1 Cryogenic Systems
 □ TX14.1.3 Thermal
 Conditioning for
 Sensors, Instruments,
 and High Efficiency
 Electric Motors

Target Destinations

The Sun, Earth, The Moon, Mars, Others Inside the Solar System, Outside the Solar System

